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LETTER TO THE EDITOR 

Homogeneous properties of modified renormalized density 
functional theory for non-uniform classical fluids 
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Department of Physics, Andong National University, Andong, 760.749, Korea 

Received 23 August 1990, in final form 12 December 1990 

Abstract. We propose the modified renormalized density functional theory (MRDFT) based 
on a globdl average of the density, and investigate some properties of this theory. I n  
this approximation, the weighting function and the weighted density are determined by 
minimizing the free-energy functiondl with respect to the ‘coarse-grained‘ density as a tree 
variable. We show that this approximation also leads to the usual hypernetted chain (HNC) 
equation of state for the homogeneous systems as do the weighted density approximation 
theories based on the global average of thedensity. even though their free-energy functional 
formsand the weightingfunctionsare basically different. From the derivationin the present 
work and comparison with the weighted densityapproximation theories basedon the global 
average of the density, we also obtain the required conditions for the weighted density 
approximation theories based on a global average of the density to satisfy the usual HNC 
equation of state for the homogeneous systems. 

Many kinds of density functional approximation theories have been proposed recently 
to describe the problems of inhomogeneous dense fluids of various sorts-for example, 
the liquid-solid transition (Baus 1987 and references therein), fluid interfaces (Evans 
1979,1989), and so on. These applications have been both qualitatively and, to varying 
degrees, quantitatively successful. Among many free-energy functional approximations 
for the inhomogeneous systems, the renormalized density functional theory (RDFT) 
proposed by Groot and Van der Eerden (1987) seemsto be the successful model, because 
the weightingfunction and the weighted density are determined by minimizing the free- 
energy functional with respect to the ‘coarse-grained’ density, unlike in other well- 
known weighted density approximation theories (Tarazona 1985, Denton and Ashcroft 
1989, Zeng and Oxtoby 1990). However, the RDFT results (Kim 1990) for the equation 
of state of the hard-sphere fluids with a strongly repulsive potential are somewhat less 
accurate than those of the original weighted density approximation (WDA) theory which 
was proposed by Tarazona (1985), even though the latter obtained a reasonable result 
for the hard-sphere interfacial problem. Therefore, for better understanding of this 
formalism we propose the modified renormalized density functional theory (MRDFT) 
based upon a global average of the density rather than a local density itself, and 
investigate some properties of this theory. We will show that this approximation also 
leads to the usual HNC equation of state for the homogeneous systems as do the weighted 
density approximation theories (Denton and Ashcroft 1989, Zeng and Oxtoby 1990) 
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based on the global average of the density. Finally, from this derivation and comparison 
with the weighted density approximation theories based on the global average of the 
density, we will derive the required conditions for the weighted density approximation 
theories based on a global average of the density to satisfy the usual HNC equation of 
state for the homogeneous systems. 

As the starting point, we consider the Helmholtz free-energy functional F [ p ]  of the 
one-particle density, which can be expressed quite generally in the form 

Fbl = k , T I  b d r )  Ilnp(r) - 11 + /drpir)ll,[pI (1) 

where the first term on the right-hand side of (1) represents the ideal part of the free 
energy, V[p]  a local excess free-energy functional per particle which arises from the 
contribution of the intermolecular interaction to the free-energy functional, and ks is 
the Boltzmann constant. Since the relation between the excess free energy and the 
chemical potential p of the non-ideal part (Evans 1979, Groot 1987) is formally given by 

we can expand the chemical potential p around that of a uniform reference fluid with 
the 'coarse-grained' density p .  Then the chemical potential becomes, neglecting the 
higher terms greater than n 3 3. 

PIPI = P ( P )  - kB.1 drl c(*+ - rl. ~ ) [ p ( r l )  - P I .  (3) 

Substituting ( 2 )  and (3) into (1) and defining f(p) and the two-point coupling function 
G(r - r,. 0) as 

and 
I 

G(r - r l ,  P )  = lo di; h(*) ( r  - rl, CO) 

we can rewrite the free-energy functional (1) in the form 

To obtain the weighted density p (hereafter, we will call the 'coarse-grained' density 
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the weighted density) and the weighting function W, minimizing the free-energy func- 
tional (5) with respect to f i  and using the exact compressibility equation (Groot 1987, 
Groot and Van der Eerden 1987) 

af(p)/ap = -kBT1drG(r ,p)  (7) 

0 = (UN) I d r d r )  1 dr, d r P ( r  - r ~ ,  0)  

the weighted density and the weighting function are given in the forms 

(8) 

and 

respectively. Here the prime on G denotes the derivative with respect to f i .  Taking the 
integration over r, we have a normalization condition 

1 dr W(r, p )  = 1. 

A relation between the two-point coupling function G(r, p) and the two-particle 
direct correlation function (DCF) c ( ~ )  follows from the defining relationship between the 
two-particle DCFand the second functional derivative of the excess free-energy functional 
F&] with respect to p(r) .  Explicitly, we have for homogeneous states, from ( 5 ) ,  

C W ,  P )  = 2C(r, P )  - ( l / v ) f l P f Y P )  (11) 

where Vis the volume of the system. Integrating over rgives the compressibility sum 
rule 

J dr cl')) (r. P )  = -2Pf '(PI - PP~"(P)  (12) 

where we used (7) to derive the above results. 
Taken together, (9, (8), (lo), (11) and (12) constitute the MRDFT theory as for- 

mulated in the R D m  theory. 
Now, to investigate the homogeneous properties of MRDFT theory we use the Percus 

identity (Percus 1964) that was used in deriving the usual HNC and Percus-Yevick 
equations of state. His main idea is that the pair distribution function g(r - t )  of a system 
at chemical potential p and zero external potentia1 is simply related to the local density 
p(r) of the same system with an external potential u(r) provided by a fixed particle at t 
interacting with the system particles by the intermolecular potential q( r  - t ) .  Specifi- 
c a y  I 

P d r  - O I " ( + O  = P(r)lu(,)=plr-t) (13) 

where the subscripts are meant to indicate that quantities on the left are evaluated in 
zero external field u(r) = 0 while the local density on the right is evaluated in the external 
field u(r) = p(r - t ) .  Furthermore, this Percus identity gives a basic connection between 
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the theories of the uniform and non-uniform fluids, which can be concisely expressed by 
the following relation (Kim and Jones 1990, Jones and Kim 1989) 

c( ’ ) (p)  = c(l)(r: [pg])  - Ing(r) - pp(r). (14) 
Here c(l)(r: [pg]) is the one-particle DCF of a fluid whose density is made locally non- 
uniform by the equivalent external potential u(r) arising from the presence of a particle 
fixed at the origin. By taking the first functional derivative of the excess free energy with 
respect to p(r), the one-particle direct correlation functional becomes, from (5), (7) and 
(8): 

c ~ : [ p ~ )  = -P~(P)+PPYW + 2 1 d r 1  p ( r i ) ~ ( r - r l ,  P I  

+ ( W W r ) )  I dri P ( ~ I )  I dr2 P(~z)G‘(+I - rzr P )  

- (ww~) )P  j’ P(rl)  / drz c’(rI  - r 2 , ~ ) .  (15) 

For the uniform case p = p and (15) simply gives 

C ‘ W  = -P[f(p + PY(P)l. (16) 
Now consider the non-uniform case c(I)(r:[pg]). Let p‘ be the corresponding global 
average from (8). Using (8) and (13) in (15) gives, after a little calculation 

where O(l/N) indicate several terms which will vanish in the thermodynamic limit. It is 
very easy to show from (8) that p‘ = p + O(l/N) so that when (11) is used, and the 
thermodynamic limit of (17) is taken, we have 

c(’)(r: [pg]) = -B[f@) + pf’(p)l + p J dr, c@)(r - r l r  p)[g(ri) - 11. 

Ing(r) = -pp(r) + p j & i  c(2+-rl ,p)k(ri)  - 11. 

(18) 

With (16) and (18), (14) yields 

(19) 

Finally the Ornstein-Zernike relation with (18) leads to the usual hypernetted chain 
equation 

Ing(r)=-pg.i(r) + P I & ,  [g(r-r l ) -  l ~ [ g ( r l ) - l - ~ n g ( r , ) - p p ( r l ) ~ .  (20) 

Thisisexactly thesame result as thoseofthe weighteddensityapproximation theories 
(Denton and Ashcroft 1989, Zeng and Oxtoby 1990, Kim and Jones 1990, Kim 1991) 
which were used in the analysis of the freezing problem of hard-sphere liquids. Here 
notice that the weighting function d2(r, Ap) and the weighted density 0 in the Zeng- 
Oxtoby approximation theory (Zeng and Oxtoby 1990) depend on the ‘charging par- 
ameter’ A. This result means that the last term of (5 )  does not contribute to the property 
of homogeneous systems, and this is clear from (15). 

From the derivation in the present work and comparison with the weighted density 
approximation theories based on a global average of the density, it is clear that the 
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conditions required for the weighted density approximation theories based on a global 
average of the density to satisfy the usual mc equation of state for the homogeneous 
systems are the following: 

(i) F&] = 5 ( p ) ,  where ? is the weighted density based on a global average of the 
density;? = ( l / N ) I ~ p ( r ) I d s p ( s ) W ( r -  s,p[p]) .  

(ii) The weighting function W(r, p )  is normalized in the homogeneous limit: 
J d r W ( r , p ) = l .  

(iii) The second derivative of the excess free-energy functional FJp] with respect to 
the density yields the correct d2)(r ,  p )  in the homogeneous limit 

These conditions mean that such a derivation does not require the specific forms of the 
excess free energy %(p)  and the weighting function W(r, p ) :  the latter does not depend 
on the 'charging parameter' A of the weighting function d&, Ap) in the Zeng-Oxtoby 
approximation theory (Zeng and Oxtoby 1990), and does not depend on the specific 
form of the excess free energy in the MRDFT theory. Notice here that the generalized 
effective liquid approximation (GELA) theory which was proposed by Lutsko and Baus 
(1990a, 1990b) also satisfies these conditions. 

On the other hand, the MRDFT theory is also expected to give an undesirable property 
for the n-particle DCF d") for n 2 3 as do the weighted density approximation theories 
(Curtin and Ashcroft 1986, Denton and Ashcroft 1989, Kim and Jones 1990, Kim 1991) 
which were based on a global average of the density, because this theory is similarly 
based. Actually, one can show that all the n-particle DCFS for n 3 3 vanish. This is 
because the functional derivatives of the weighted density fi  with respect to p(r) for 
homogeneous systems vanish in the thermodynamic limit. This is clear from the form of 
(8), and this is acommonproperty of the weighted density approximation theories based 
on a global average of the density. However, as we can see in the Zeng-Oxtoby 
approximation theory (Zeng and Oxtoby 1990). it is expected to give the different results 
for the freezing problem of the hard-sphere liquids, in which the solid is treated as a 
liquid with an effective liquid density. 

In summary, we have considered the MRDFT theory based upon a global average of 
the density, and determined the weighted density and the weighting function by mini- 
mizing the free-energy functional with respect to the 'coarse-gained' density. We have 
shown that, just like the weighted density approximation theories based on a global 
average of the density, the MRDFT theory also leads to the usual HNC equation of state 
for homogeneous systems. From these results, we have obtained the required conditions 
for the weighted density approximation theories based on a global average of the density 
to satisfy the HNC equation of state for the homogeneous systems. As we can see 
from these results, an interesting question is: what forms of approximation for the 
homogeneous systems would correspond to other usual approximations for the uniform 
fluids, namely the Percus-Yevick and Yvon-Born-Green approximations? We will 
leave this problem as one for future study with the application of MRDFT theory. 
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